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[. Summary

A study of optimal aerodynamics and propulsive ccntrol at supercircular speeds has been
initiated. The objective of the research is to develop methods for determining optimal guidance ana
control of earth launch kinetic energy weapons designed to intercept intercontinental ballistic
missiles early in their ascent trajectory. Optimal control techniques are being used to obtain multi-
stage trajectories based on minimizing the mass ratio. Study parameters include time of flight,
down range intercept distance and intercept altitude. Re-entry/skip trajectories are considered.
Innovative means of attitude control of the final stage which intercepts the target are being studied.

In addition an investigation of the control of aerodynamic forces on hypersonic vehicles by
boundary layer injection has been started. The goal of this work is to determine optimal patterns of
injection of a gas into a boundary layer on a hypersonic vehicle, to generate desired aerodynamic
forces. Two directions of approach are being studied. In the first, analytical means are being used
to study the effects of blowing cn simple flow problems in the various flow regimes; a
combination of asymptotic and numerical methods are in use. In the second, numerical methods
are being used, with particular emphasis on obtaining efficient codes which resuit in the
computation of crisp shock waves and which can handle blowing in the boundary layer. Both
distributed and strip blowing are under consideration.

Preliminary results are presented.
[I. Research Objectives

The contract for this research work has two phases, ore dealing with optimal trajectories at
superorbital velocities and the other with aerodynamic force calculations. Hence the work
statement for the year's work has two separate parts as follows, where paragraph numbering from

the contract is repeated here.

0001AA

1. Formulate the automartic control problem description of the dynamics of
transatmospheric vehicles for ballistic missile defense. Appropriate control laws shall be
determined and techniques for vehicle optimization shall be developed.
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2. Examine schemes for the generation of aerodynamic control forces on hypervelocity
vehicles by the injection of gas into the boundary layer. Plan analytical and numerical
investigation of both slot and surface injection from hypersonic slender bodies and select
techriques for distinguishing among dominant fluid mechanical phenomena. Minimize the
effects of numerical difference schemes upon shock wave thickness and location.

II. Status of the Research Effort

This work began on August 15, 1986. The contract was to he for 37 months, divided into
three periods, the first being 13 months and the last two being 12 months each. At the end of the
first period, pending demonstration of satisfactory work, the first option was to be exercised in
order that work during the second period could proceed. A technical briefing was given to Col. D.
Finkleman (Air Force), Col. W. Merritt (Army) and Major S. Rezwick (Air Force) in early August
of 1986; it was indicated that they were well sarisfied with the technical effort and results.
However, during the time that option one could have been exercised, the coniract was being
transferred to Army supervision and apparently the group transferring the contract to the Army was
not aware that further action was required. As a result this contract is terminated after 13 months
and a new contract for the remaining two options is being renegotiated with the Army Strategic
Defense Command. Thus, this final report covers one year of a proposed three year effort. The
following status report is in two parts, with the numbering corresponding to that of the phases in
the work statement.

1. Optimal Aerodynamic and Propulsive Control of Intercept Trajectories at Supercircular
Speeds.

Robert M. Howe, Principal Investigator
Nguyen X. Vinh Co-Investigator
Elmer G. Gilbert Co-Investigator

Ping Lu, Graduate Student

Aharon Karou, Visiting Scholar

Gi! Shorr, Visiting Scholar

1.1 _Introduction

The utilization of satellite-based kinetic-energy weapons for intercepting intercontinental
ballistic missiles during their ascent trajectory constitutes one of the major efforts in the current




U.S. Strategic Defense Initiative program. In this research we have considered an alternative to
space-based weapons, namely, the use of land or sea-based kinetic energy interceptors. When
such interceptors are based on the U.S. continent, ranges of up to 5000 miles are needed. If the
interceptors are sea launched, for example from submarines, the required interceptor range can be
reduced to as iittle as 2000 miiles or less. In either case the interceptor must accelerate to very high
speeds, typically twice circular orbit velocity, in order to reach a target at these distances within
several minutes.

In order to achieve these velocities, a rocket powered interceptor requires an overall mass
ratio of several thousand 0 one. Even so, the interceptor takeoff weight can be held within
reasonable bounds by the use of miniature guided warheads. It is clear that such large mass rutios
can only be achieved by using between 4 and 7 rocket boost stages. In this research we have
considered the problem of optimizing a number of stage parameters and the angle of attack control
in order to minimize the overall required mass ratio. The time history of angle of attack was
pararneterized by letting the angle of attack for each thrusting stage vary linearly with time.
Additional parameters to be optimized included the thrust burn times for each stage and the coast
times between stage burns. Although rockets of this type would normally be launiched straight up,
we have also included the initial launch flight-path angle as a parameter. This was based on the
assumption that a fairly rapid pitchover maneuver can be performed immediately after launch to
achieve the desired initial flight path angle.

Once the trajectory optimization problem has been converted to a parameter optimization
problem, a quasi-Newton minimization algorithm is utilized with penalty functions to implement
the terminal constraints required for intercept, as well as any additional constraints. The necesry
gradients of the cost function with respect to the parameters are computed numerically using b
differences. A complete multi-stage trajectory must be run using numerical integration for ev..v
evaluation of the cost function. For each set of N parameters this means that N+1 con» =
trajectories must be computed, one to evaluate the cost function for the given parameter set..rgs,
and N to evaluate the gradient of the cost function with respect to each of the N paru: ok
the trajectory optimization problems we have considered. between 10 and 20 paramet -
used. Thus between 11 and 21 complete multi-stage trajectories must be computed nuitcacdiay .

a single iteration of the optimization procedure. Also, each iteration utilizes a line search whichi
requires several additional trajectory computations. It has been found that between 200 and 400
iterations are needed until satisfactory convergence to an optimal solution is achieved. It follows
that several thousand trajectories must be computed for each optimization case considered. In
order to reduce the overall computational time, the multiple-stage trajectories were calculated using




an AD 100 multiprocessor computer. A VAX host computer was used to implement the
optimization algorithm and input new parameters w the AD 100 for each successive trajectory run.
In this way the total time required for an overall trajectory optimization was reduced from several
hours to several minutes.

In the next section scalar equations of motion for the interceptor trajectory are presented.
Subsequent sections discuss the optimization problem, its numerical solution, and results for a
typical 4-stage trajectory optimization.

1.2 Equations of Motion

In order to reduce the trajectory computation times, only the two dimensional equations of
motion of the interceptor were considered. As a further simplification, the effect of earth's rotation
was neglected. It was felt that neither of these simplifications altered the overall nature of the
optimization problem. More comprehensive equations of rotion can always be incorporated into
the optimization problem at a later time to improve the accuracy for these cases which may tum out
to be of practical interest. Thus the interceptor rocket was considered to be a point mass m moving
in a plane which contains the center of a spherical, non-rotating earth with inverse square
gravitational field. A convenient and efficient method for representing the velocity state of the
interceptor is in terms of the total velocity and the flight path angle with repect to the local
horizontal [1]. This leads to the following two-dimensional equations of mction:

r = Vsiny (1.1)
: v
0 = -;-cosy (1.2)
T D &T
V=—-cosa------0-—9-siny : (1.3)
m m 2
2 2
g.T
Y =-\-1/-[—-sma+-l—“--‘%-9-cosy+——cosy] (1.4)
r
: T
m = 7 (1.5)
sng




where

r = radial distance from center of earth 0 = polar angie

V =total velocity Y = flight path angle

m = interceptor mass T =rocket thrust

o = angle of attack D = aerodynamic drag

L = aerodynarnic lift 1 = reference radius

g = gravity acceleration at r =1, Isp = specific impulse of rocket niotor

The aerodynamic lift, L, and drag, D, are given by the following formulas:

L=21-pV2ACL, D=-21-pV2ACD (1.6)
CL= CNcosa-CAsina, CD= CNsina+CAcosa (1.7)
where
p = ammospheric density A = interceptor cross-sectional area
Cp = lift coefficient Cp = drag coefficient
Cy = normal force coefficient C, = axial force coefficient

Cy and C,, which reprusent aerodynamic normal and axial force coefficients in body axes, can be

approximated for slender bodies by the following formulas [2]:

Cy = sin2a cos@ + 2 Asinaisinal, C, = 0.15 (1.8)
where
A = rocket length d = rocket diameter
The atmospheric density, p, in Eq. (1.6) is a function of the rocket altitude h, which is
given by the equation




h = (R-1)rg (1.9)

Three different methods fur approximating the variation of p with h were considered. The first
utilizes table lookup with linear interpolation based on a tabulated standard atmosphere. This
methed introduces into the simulation a function with discontinuous slopes, which has the potential
of causing numerical difficulties in the descent algorithm (see Section 1.4). The second method

uses the following exponential approximation:

p = poe-Bh (1.10)

where 1/B = 23,500 ft. and py) is the atmospheric density at sealevel. The third method uses the

following analytic approximation [3}:

plpo = [Ag+ Ath+ Ash2+---- + Ayqhll}-4 (1.11

with

Ag = 1.0000000000 Ay =0.3393495800 x 10-! A2 =-0.3433553057 x 10-2
A3 =0.5497466428 x 10-3 Ay =.0.3228358326 x 104 Ag = 01106617734 x 10-5
Ag = -0.2291755793 x 10-7 A7 =0.2902146443 x 10-9 Ag =-0.2230070938 x 10-1!

Ag =0.1010575266 x 10-13 Aj9=-0.2482089627 x 10°16 A, = 0.2548769715 x 10-19

Eq. (1.11) is valid from 0 to 200 km. altitude and is accurate to better than S percent for altitudes
up to 70 km. It is a considerably better approximation than the expenential model in Eq. (1.10)
and takes no longer for computer execution than the table lookup scheme. Thus it represernted our

preferred approach.




Dimensioniess versions of Egs. (1.1) through (1.9) and Eg. (1.11) were used for the
trajectory simulation of each inteceptor stage while thrusting or coasting (T = Q). Tne state
variables r, 8, V and y are continuous from one stage to the next. On the other hand, the state
variable m, which represents the mass of each stage, undergoes a discontinuous decrease each time
a stage burns out and is dropped. The mass state m can be made continuous by defining it as the
mess of rocket fuel divided by the initial takeoff mass. The totai instantaneous mass for each stage
is then the sum of the fuel mass and the inert mass. The burn time for each stage, as well as the
coast time per stage, constitute parameters to be optimized. For a given stage mass ratio, the stage
burn time determines the thrust level for the stage. Thus the parameters representing stage burmn
times are equivalent to paramcters representing stage thrust levels. As noted previously, the time
history of angle of attack was parameterized by letting it vary linearly for each stage. Thus an
additional parameter per stage is the ime-rate-ot-change of angle of attack.

1.3. Constraints and Optimizarion Problem Formulation

To complete the statement f the optimization problem it *v#as necessary to introduce
certain constraints on the trajectory and its defining parameters. The most obvious of these
were the ones required for target interception. After final stage cutoff, the payload must
coast in such a manner that at the specified intercept time, ts, the position vanables, r(tf) and

6(tf), match those of the target.

There are several ways to implement the intercept conditions. One way is to impose them
at the time of final-stage cutoft, t.. If r(t.), 8(t¢), r(tf), and 8(tg) are knnown and the coast 1s an out-
of-the-atmosphere conic transfer, the values Y(t¢) and V(1) required for intercept are determined by
solving an appropriate L.ambert problem. This can be done numerically by the methods given in
[4]. The errors between the required ard actual values of Y(t:) and V(t¢) must be zero for intercept

and these conditions give two equality constraints on the trajectory at t = t.

It was found that uncenstrained optimal conic coast rajectores e-enter the aunosphere or
cven pass through the earth's surface. To assure that this doesn't hapi'en, the minimum alvtude
during the coast was computed (as part of the solution of the L ambert problem) and specified to lie
outside the sensible atmosphere. The error between the computed minimum altitude and its

speciried value constituted, when set to zero, a third equadity constraint.

Ariother way to implement the intercept condition is to integrate numerically the equations
of motion of the final coast trajectory, just as the equations for the previous stages were integrated.

In this case the errors uetween the interceptor coordinates r(ty), 8(tf) and the carget coordinates at the




final time t¢ are set equal 0 zero to form two equality constraints. As before, a minimum allowabie
altitude outside the sensible atmosphere can be chosen for the final coast trajectory. This minimumn
altitude is then the third constraint. Alternatively, the effect of the atmosphere itself, which is
included in the trajectory equations, will ensure that a realistic altitude constraint is enforced when
the final coast trajectory equations are integrated. Indeed, this is the required approach in the aero-
assisted case, where the final coast trajectory actually utilizes aerodynamic down lift to hold the
trajectory at near constant altitude in the presence of supercircular velocity. In Section 1.5 an
example of this type is presented.

In addition to the equality constraints on the trajectory, inequality constraints may be
imposed on some of the problem parameters. For example, an initial stage acceleration, Ao T, may
have upper and lower limits, Agmax and Apjy. Direct treatment of these constraints in the
algorithmic process was avoided by imposing them implicitly through the introduction a nonlinear
transformation of a new parametric variable. In the case just mentioned a suitable transformation is

(1.12)

where at is the new unconstrained parameter.

Putting all of the above details together in a compact notation yields a problem of the form

minimize {(z) subjectto gi(z) =0, 1=1.2,5. (1.13)

Here: f(z) i1s the ratio of the launch mass to the payload mass, the gi(z) are the errors in meeting the
equality constraints, and z 1s a vector whose components are the "unconswained” parameters
arising from models described in Section 1.2, Given z, 1t 1s clear that f(z) and gij(z) may be
cvaluated by integrating the equanons of motion, computing m(t.), Y(t), V(to), r(te), and 6(t.), and
solving the Lambert problemn determined by the target specification. When the alternative method
involving numerical integrauon of the final coast trajectory is used to implement the intercept
condition, f(z) was still evaluated from m(t.), but gj(z) 1s evaluated from r(ty} and e(ty).

The algorithm for the numencal solution of (1.13) requires the gradient (collection
of N tirst partial derivatives) of functions such as f(z). While 1t 1s possible to denve formulas for
the partials (they may be written in tenns of the differsnual equations adjoint to the lincanzed
equations of mouon), they are exceedinglv complex because of the nonlinear funcuons appearing
in Eqs. (1.1) - (1.9) and (1.11). This was the reason for using finite differences for the gradient

calculations.




1,4 Numerical Solution of the Qptimization Problem

A variety of numerical approaches have been used to solve trajectory optimizarion problems
with equality constraints. These include: (1) gradient projection methods, (2) Newton-Raphson
solution of the necessary conditions, (3) penalty function methods. Approach (1) gives slow
convergence; approach (2) requires second derivatives of problem data and good initial estimates;
approach (3) leads to badly conditioned (though unconstrained) minimization problems. In the
research reported here approach (3) has been used, with its disadvantages attacked by using a
rapidly convergent quasi-Newton algorithm [5,6] and an augmented Lagrangian for the penalty

function.

In the usual penalty function method approximate solutions of (1.13) are sought by

algorithmic minimization of

3
Fol2) = £2) + ). plg @) (1.14)

t=1

It can be shown [5,6] that the equality conditions can be accurately enforced by choosing the
penalty coefficients, yi > 0. to be sufficiently large. In practice, numenical hazards, such as slow
convergence or convergence *o false minima, are reduced by minirnizing Fp(z) several times with
successively larger values for the penalty coefficients. At each successive stage the starting point
for the nunimization algorithm is taken as the solution point from the previous stage. Even so, the
condinonmng of Fp(z) worsens [5,6] as the y, increase and there s a practical limit to the accuracy
which can be achieved. Numencal errors in the minimizatuon algonthm and the evaluation of Fp(2)

and its gradient eventually become the limiang factors.

In the augmented Lagrangian approach Fp(z) 1s replaced by

3
F i (z) = f(z) + z)\lg‘(z) + 2;111;_z|(;z)l~ (1.15)

1=} L= ]

where the A; are real numbers approximating the Ligrange multipliers for the minimization problem
(1.13). When Fp(2) 1s minimized, 1t i1s possible to sausty the equahity constraints accurately with
much smaller values for the penalty coefficients [5,6]. The resulting improved conditioning of
Fi.(z) reduces the bad effects of the nurmnencal errors. Again, 1t 1S advantageous to solve a

sequence of minimization problems with successive initializauons, where in this case both the A,




and the u; are adjusted. The adjustment scheme proposed by Powell and described on page 134
of {5] was used with good results in the research reported here. It elimirated the need for human
intervention in selecting the parameters A; and ; and improved by at least an order of magnitude

the accuracy of equality constraints over the simple penalty function approach.

Because of the highly nonlinear character of F (z) and its poor conditioning, it was
necessary to pay careful attention to the procedure for its unconstrained minimization. Certainly,
the second order properties of F(z) must be taken into account. The BFGS, quasi-Newton
program of Shanno and Phua [7] was found to be effective. Its line searcli was modified to
compute derivatives along the st rch direction directly by forward differences. This eliminated the
need for gradient evaluations during the line search.

The performance of a quasi-Newton algorithm is predicated on the smoothness of the
function being minimized. The function should be at least twice coniinuously differentiable. Here,
the representation of empirical data appearing in the equations of motioa is ir poriant. See, for
example, the comments in Section 1.2 on computing the atinospheric density by table lookup with
linear interpolation.

Arother concern is the forward difference computation of the partial derivatives of Fy (z).
If the step size is too small, the effects of round off errors are exacerbated; if the step size is too
large, truncatioa errors become appreciable. If the machine precision is e, it can be argued [6] that
the step size should be the order of el/2. In our case the machine precision ¢ @ 1012 was
determined by the AD 100, which has a 40 bit significand. It was fourd that the step size 10-6 was
reasonable, but that cxperimentation with the step size could improve the accuracy noticeably.
Even better accuracy was obtained by using central dirferences for the partial derivatives. It
reduced the effects of round-off errors, since in this case a larger step size could be used for the
same truncation error [6]. Of course, 2N + 1 evaluations of Fi (z) are then needed to obtain Fi (z)
and its gradient.

In general the trajectory state equations were solved numerically using fourth-order Runge-
Kutta integration with a fixed step size. A single-pass predictor method with a Gear RK-4 startup
algonthm was found to give better pesformance in some cases [8] and represents an area for further

research.

1.5 Example Optimal Trajectory Solutions

Two example optimal trajectory solutions are considered in this section. 6(t) - 8¢, the total
change in polar angle of each trajectory, is set equal to 30 degrees. This corresponds to an




interceptor range of 2094 miles. The total time of interceptor flight was prescribed to be 300
seconds and the target was intercepted at an altitude of 200 km. Stage takeoff weight was equal to
10,000 kg and physical parameters were assumed to be similar to those of a Minuteman III. The
specific impulse [gp of the rocket engines was equa! to 300 seconds, and the ratio of initial fuel
weight to inert weight for the rocket motor of each stage was assumed to b 10. The intercept
condition was implemented by two equality constraints that required the interceptor coordinates at
the final time tf to match the target coordinates. Two cases were considered; aeroassisted and non-
aeroassisted. In the aeroassisted case the final coasting stage reenters the earth's atmosphere with a
controlled angle of attack which could generate downward lift. In the non-aeroassisted case the
angle of attack of the final coasting stage was maintained at zero, which meant that aerodynamic
forces could only cause drag. In each case there were 4 booster stages, with equal mass ratios
prescribed for each stage. The common mass ratio was therefoe a parameter. As noted earlier,
the performance objective was to maximize the final payload weight. The results are summarized
in Table 1.1.

TABLE 1.1. Optimal Trajectory Data for 4-scage Interceptor

Acroassisted Non-aeroassisted
Finai optimal payload weight 9.73 kg 5.63kg
Mass ratio per stage 3.98 4.33
Minimum altitude in final coast to target 93.82 km 76.82 km
Burnout speed (V¢ = circular orbit speed) 1.766 V¢ 1.775 V¢
Burnout altitude 98.24 km 155.04 km
Launch flight path angle, 1, 82.8 deg 60.6 deg
Initial thrust acceleration, stage 1 13.05¢g 928¢g
Burn time, stage 1 17.21 sec 24.86 sec
Coast time between stages 1 and 2 6.49 sec 1.84 sec
Initial thrust acceleration, stage 2 2337 ¢ 1293 ¢
Burn time, stage 2 9.61 sec 17.84 sec
Coast time between stages 2 and 3 5.35 sec 2.41 sec
Initial thrust scceleration, stage 3 3140 g 2387¢g
Burn ume, stage 3 7.15 sec 9.67 sec
Coast time between stages 3 and 4 14.85 sec 56.74 sec
Initial thrust acceleration, stage 4 37.52¢ 3167 ¢
Burn ame, stage 4 5.99 sec 7.29 sec
rinal coast time to target 233.67 sec 179.36 sec
Total flight time 300 sec 300 sec
Total distance 2094 miles 2094 miles

11




From the table it is clear that the optimal aeroassisted trajectory yields a significantly larger
payload, 9.73 kg versus 5.63 kg for the non-acroassisted case. In Figure 1.1 are shown time
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Figure 1.1. Time history plots for the aeroassisted optimal trajectory.
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history plots of velocity, flight path angle, dynamic pressure and angle of attack for the
acroassisted optimal trajectory. Figure 1.2 shows altitude versus polar angls plots for both the
aeroassisted and non-aeroassisted trajectories. Note how the aeroassisted trajectory is able to
maintain an approximately constant altitude of soroe 95 km over more than half of the firal coast o
intercept. T 11 possible despite the supercircular speed because of the aerodynamic down lift,

which reac naximum of 1.87 g during this portion of the trajectory. The maximum total
downward : ... atinn, including gravity, is therefore 2.87g. Since the centrifugal acceleration in
gunits is V, “ . is the circular-orbit velocity), it follows that constant altitude (i.e., a circular

orbit) will, «n = presence of 1.87 g of down lift, be maintained at a velocity of Q.8N2 or
1.694V.. R:fei e to the plot of V versus time in Figure 1.1 shows that this is indeed the case.
On the other ha.  we see in Figure 1.2 that the non-acroassisted trajectory must climb to over 150
km before the /1 1 stage bumn in order t¢ avoid significant penetration of the atmosphere. This
results in a ¢o rable more expensive trajectory in terms of required mass rago.
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Figure 1.2 Comparison of optiml tractories with and without acroassistance.
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The plot of angle of attack o versus time in Figure 1.1 shows clearly the linear variation of
o for each stage. Note that zero angle of attack was assumed during the coast between stage
burns. This was based on the assumption that the interceptor is aecrodynamically stable during
these coasts with no active thrust vector control. Means of active attitude control would be
required to maintain the linear angle of attack variation shown for the final coast to intercept. One
option for achieving this would be to provide thrust vector control utilizing a low level of thrust
during this final portion of the trajectory. Such thrust will probably be required in any event to
provide course corrections to intercept the target. When this is included in the overall trajectory
optimizaton, it may very well produce a non-aeroassisted optimal trajectory which is competitive
with the aeroassisted case, since now a downward component of thrust can be used to replace the
aecrodynamic down lift. It should be noted that boundary layer injection at hypersonic speeds,
which is the subject of Part 2 of the research reported here, is also a candidate for attitude coatrol
while the interceptor is either coasting or thrusting in the atmosphere.

1.6 Optimal Intercept from 3 Space Base

The final stage of the computed trajectory is essentially a small rocket interceptor iaunched
from space, i.e., from the ascending (n-1)th stage. Therefore, an analytic study of the optimal
intercept trajectory has been made for the case of space launch from an orbiting platform. The
launch base is assumed (0 be on a Keplerian orbit. The trajectory of the target is arbitrary, but it is
assumed to be well determined after a time t() called the acquisition time. Again, the intercept time
tf-to is restricted to several minutes.

For flight in a vacuum and in a central Newtonian force field with impulsive thrust, a
complete anaiytical solution has been obtained. The study used the well established theory of the
primer vector in optirnal transfer. For a specified intercept time tf, the one-impulse solution
initated at the time tg is assurmed. The associated Lambert problem is solved and the magnitude of
the required impulse is computed. The resulting initial conditions and the transversality conditions
for optiinality are sufficient to compute the primer vector which governs the optimal thrust control.
Then, based on the information provided by the primer vector, rules have been established to
search for the optimal solution if the assumed initial one-impulse trajectory is rot optimal. It has
been found that there are three possible optimal trajectories.

a. One impulse trajectory with the thrust applied immediatzly at the acquisition time t.

b. One-impulse with an initial coasting phase until the optimal time t;>ty before the
application of the impulse.
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c. Two-impalse trajectory with the first inpulse at t; and the second impulse at mid-course
for final interception.

The theory can be used to explain the necessary coast time between the nth stage of the
previously computed optimal trajectories for a muiti-stage interceptor launched from the surface of
the earth.

A numerical example has been used to test the theory. The interceptor is launched from a
base in a circular orbit at 600 km altitude. The target is intercepted at an altitude of 250 km with a
down range longitude of 45 degrees and various latitudes ranging from 0 to 60 degrees. The
intercept times range from 2 minutes to 15 minutes. For each case the maximum characteristic
velocity for intercept is computed. Depending on the prescribed intercept time, the trajectory may
change from an elliptic trajectory to a clearly hyperbolic trajectory.

1.7 Guidan n ntrol to Int f the Final

To provide terminal control out of the atmosphere sc the final stage can home on the target
requires some type of guidance law and trajectory control. The trajectory can be changed by
providing acceleration at right angles to the interceptor flight path. For an interceptor which utilizes
a fixed rocke: engine to provide acceleration along its longitudinal axis, a required lateral
acceleration component can be generated by the appropriate change in attitude angle.

To minimize weight and complexity, an attitude control method which uses only a single
small control jet has been studied. This single jet provides thrust at right angles to the longitudinal
axis of an axially-symmetric terminal stage. The stage is given a large roll rate about its longitudinal
axis, along which the main rocket engine provides continuous thrust. Attitude control is achieved
by turning on the smatl side jet for a fraction of each revolution and at the right time during the roll
cycle. A simple incremental change in attitude of the spinning stage can be viewed as a change in
direction of its angular momentum vector without a change in vector magnitude. Each discrete
change in attitude requires at least two impulses from the control jet. The first impulse produces an
increment in angular momentum at night angles to the spin axis. The second control jet impulse is
applied half a roll period later to cancel the angular momentum increment at right angles to the spin
axis, which has now been changed in direction by the attitude angle increment. The size of the
incremental change in attitude angle can be varied by changing the thrust duration of the control jet.
If the available thrust is insufficient to change the attitude by the desired amount, then a number of
cyclic impulses followed by the same number of cyclic impulses initiated half a period later can be
utilized.
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The dynamics of the above control scheme has been studied using both analytic methods
and computer simulation. Minimum resolution in attitude angle has been established as a function
of system parameters, including minimum control-jet thrusting time. Muldple thrust mancuvers for
large attitude changes have also been studied in the same manner. Required control laws for
achieving desired attitude angle changes have been developed.

Once a means of attitude control is available, a guidance law is needed to specify the
required trajectory changes. The most commonly used guidance law for homing missiles is
proportional navigation. Here it does noi appear to be a practical guidance method because it
resuits in excessive terminal accelerations for the interceptor. As an alternative, a simpie algorithm
has been developed to estimate the future positions of both interceptor and target. Based on target
position, velocity and acceleration, and the known equations of motion, a power series solution for
future target position is obtained. In the same way, the future interceptor position is computed.
Frcm these predicted trajectories the required interceptor attitude for zero miss is calculated and
utilized to implement the guidance law. Computer simulations have been used to test the
effectiveness of this method in combination with the single-axis attitude control scheme described
above. The simulations have been run for both thrusting and coasting targets. Based on
reasonable interceptor parameters, including roll rates, control-thrust levels, and minimum control-
thrust times it has been determined that direct hits can be obtained. However, these simulations
have not yet taken into account the effect of guidance measurement errors, nor have they
considered the effect of target thrust termination during terminal guidance of the interceptor.

1.8 Conclusions an ntR h

This research has considered techniques for computing the optimal trajectories of earth-
launched interceptor rockets which are accelerated to over twice orbital velocity. The objective of
the optimization is to maximize the payload with a given interceptor takeoff weight. Terminal
constraints have been enforced using penalty functicns. The required gradients of the cost
functions have been computed numerically using finite differences. Results have been presented
for a 4-stage example. It was found that allowing a coast period between booster stages and using
an aeroassisted trajectory to generate down lift during the final coast segment improves the optirnal
payload significantly. The research has also considered attitude control of a final interceptor stage
which uses a fixed rocket engine to provide thrust along its longitudinal axis, about which the
rocket also spins. Attitudr changes are achieved by firing a single small thruster at right angles to
the spin axis ar the appropriate time during each spin cycle. In combination with a guidance law
based on predicted future target and interceptor trajectories, it has been found through computer
simulation that direct hits can be obtained.
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Future optimal trajectory research efforts will include parametric studi¢s of the effect of
different prescribed flight times, target range and altitude, payload mass, and refined aerodynamic
and propulsion models. The effect of aerodynamic heating on the ascent trajectory and during the
aeroassisted terminal trajectory will also be studied. Optimal trajectories for the case where the
final coast to the target is replaced by a thrusting stage will also be determined. 'The problem of
optimal intercept from a space base will be extended to the case where the carrier is an ascending
rocket, namely, the (n-1)th stage, and to the case where the carrier is a supersonic aircraft

maneuvering at high alttude.

Additional research on methods of guidance and control of the final interceptor stage will
consider the use of more accurate target and interceptor prediction methods, the effect of guidance
measurement errors, and the effect of uncertainty in target thrust termination ime. The influence of
each of these effects on the performance attainable with the single-jet attitude control scheme will

be studied.
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A great deal of work on hypersonic flow was done in the period 1955-1970, with some

attention paid to boundary layer blowing. Although the greatest part of this work had to do with
the flow over blunt bodies, there were some studies involving slender bodies. More importanily,
multi-component flows, dissociation of the air, gas reactions involving effluents from :he surface,
and the strong effects of heat transfer received much attention in those analyses. Because
numerical techniques were in their infancy, analytical methods and the necessary attendant
simplifying assumptions were used. In the meantame, the use of computational methods has come
to the forefront and more realistic closure models have allowed the numerical analysis of turbulent
boundary layers. Nevertheless, the literature has much to offer for this probZem and so the first
few months of this effort were uscd in a literature search. Particular emphasis v-as given to papers
on gas injection into boundary layers in hypersonic flows, or at least compressible flows, on
hypersonic flow over slender bodies, and particularly over wedges, and on multi-component flow
fields, and in particular, the calculation of multi-component transport properties.

The problem considered is that of two-dimensional hypersonic flow over a slender wedge,
from the upper surface of which a gas, not necessarily air, is blown. Figure 2.1 contains sketches
of the case where the blowing is distributed over the whole surface (2.1a) and the case where it is
confined to strips (2.1b), and illustrates the notation employed. It should be noted that s(x) is
indicated to be the distribution of effective body shape. Since it is measured relative to the surface
of the wedge, it is a displacement thickness. For strong blowing, that is when the viscous
boundary layer is blown off the wall, and moreover, for the case where this viscous layer is thin
compared to the blown layer thickness, the displacement thickness corresponds to the separating
streamline; i.e., all the blown gas flow lies within some bounding streamline. For other
conditions, when the viscous layer is not thin, a displacement thickness must be calculated. In
Figure 2.1b, the shapes s](x), s3(x),... indicate the displacement thickness distributions for the
flow resulting from all the strips except the first (s(x)), all except the first two (s2(x)) etc. Just as
in typical boundary layer theory, one can consider the thickness of a concentration layer consisting
of the region into which the injected gas is blown and/or diffuses. For example, following usual
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practice, the edge of the layer might be defined as the line along which the concentration of injected
gas is a very small constant; of course this line is not a streamline. The order of magnitude of the
ratio of the thickness of this layer to the displacement thickness depends on the case under
consideration. Thus, for the case where the injection velocity is of the same order as the v velocity
component in the boundary layer and the injected gas mixes with the boundary layer air (weak
blowing), the order of this ratio depends upon the Schmidt number. Indeed, *he effect upon this
ratio of the ratio of the molecular weight of the blown gas to the molecular weight of air may prove
to be an important parameter in the probiem of obtaining a given pressure distribution for a
minimum amount ¢f blown gas. In any event, the fundamental problem considered is that of
ascertaining the effective body shape s(x) for a given blowing distribution v4(x) so that the
corresponding pressure distribution on the wall or body surface can be calculated; finally it is
desired tc solve the inverse problem so that the blowing distribution vw(x) can be found for a
desired pressure distribution py(x).

In hypersonic flow without blowing, the shock wave on a slender wedge lies close to the
body and thus to the boundary layer over the body. For some conditions, the inviscid shock layer
downstream of the shock wave has a thickness large compared to the boundary layer thickness and
for others inay be of the same order of magnitude, and in fact, may merge with the boundary layer.
In addition, if the nose is slightly rounded, the shock wave is detached and a thin high entropy

layer is found adjoining the wall. The parameters which control the type of flow field found are
the Mach number of the free stream M__, the Reynolds number based on the free stream properties

and the body length Re__, and the wedge angle 8 and nose radius. The hypersonic similarity

parameter, written as M__8 in terms of the parameters already defined, is taken to be 0(1) or large

compared to one for hypersonic flow. The parameter which characierizes the relative order of the
thicknesses mentioned above is the viscous interaction parameter

M
(2.1)

x =
L Rcl«

where ¢ is a constant. Thus for (I << 1, there is a weak interaction between the inviscid and

boundary layer flow; in other words, the boundary layer is thin compared to the shock layer. As
1 increases, the boundary layer becomes thicker relative 1o the shock layer until a sirong

interaction occurs; then, they are the same order of magnitude and the solutions for cach layer must
be found simultaneously. Finally, for
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X=0 M) (2.2)

and for x; >> M _2, the layers are merged; they are indistinguishable.

When gas injection is introduced, as an additional mechanism to change the displacement
thickness, it is still instructive to characterize the flow using XL However, now the ratio of the
order of the displacement thickness without blowing to that with blowing &*/8p* may be used in
addition, as indicated in Figure 2.2, where various physical problems and flow structures are
associated with parametric regimes. It should be noted that there are no definite limits on any of
the regimes. The dashed lines are drawn arbitrarily simply to illustrate that there are different
regions in the sketch; in actuality, there is a gradual change from one flow regime to the next. It is
instructive to picture the flow fields associated with various parametric regimes shown in Figure
2.2. Several such pictures for a flow over a half wedge are shown in Figure 2.3, where the
identifying letters correspond to those in the circles in the sketch in Figure 2.2. For both weak and
strong blowing, as XL increases, merged layers (not shown in Figure 2.3) occur. As seen in
Figure 2.3, the most striking feature of the flow field with blowing is that as the blowing velocity
increases, the boundary layer can be completely blown off the wall. It is this feature which will be
used to characterize the terms weak and strong blowing. Thus, as long as the boundary layer is
attached, the blowing is weak, while for strong blowing the boundary layer is blown off the wall.

It was decided tc attack the problem from two different viewpoints. First, one of the
important problems in developing a computational method of solution for compressibie flow is the
location and crispness of the shock wave. This is a more difficult problem in hypersonic flow over
a slender body because the shock wave is at a relatively small angle relative to the direction of the
undisturbed flow. Hence, work is being done on developing a code which will handle flow over
slender bodies with arbitrary shape, correspending to a wedge with blowing. Since the tnviscid
flow over an effective body (physical body plus displacement thickness) is being considered, the
Euler equations are being solved. The other point of view under consideration has to do with the
analyses of the near wall layers when blowing takes place. It was decided to consider the hard
blowing case first for two reasons. First, the weak blowing case is essentally contained in the

hard blowing formulation; i.e. no new mechanisms need be considered. Second, one of the
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important sub-cases in the hard blowing {ormuiation is that where the viscous shear layer, which
results when the boundary layer is blown off the wall, is thin compared to both the blown layer
and the shock layer. Hence the problems is as sketched in case (c) in Figure 2.3, and it is seen that
for distributed blowing over the whole surface, the flow is inviscid. Thus, solutions found
analytically could also be calculated numerically, because in this special case the whole flow field is
inviscid; such test problems can be used to validate the numerical code as well as give useful
information. Moreover, the extension to the case where the viscous shear layer thickness is no
longer negligible is relatively simple. The work discussed in this report, then, is concerned with
numerical solutions to the inviscid flow equaticns (Euler equations) and to solutions relating the
equivalent body shape to the distribution of blowing velocity at the wall for the case of strong
blowing; in the latter case problems with flow fields similar to those shown in both (c) and (d) of

Figure 2.3 are considered.

2.1 Analytcal Approach

In the analyses which follow, the lengths are made dimensionless with respect to a length L
(overbars denote dimensional quantities) which for the present is arbitrary, but which will be used
later to denote the length of the body. Moreover, the dimension normal to the flow is ordered by
S, the basic sma!ll parameter of the problem, and defined as the value of the nondimensional

displacement thickness at x = 1 (X =L). Thus y and the displaement thickness are denoted by

Y=y, (2.3a)
y =5, 5(x) (2.3b)

where, as previously indicated, s(x) gives the distribution of displacement thickness. For
XL << 1, yq is the dividing sreamline between the blown tlow and the shock layer flow; the

viscous shear layer of negligible thickness lies along yq also.

If P_, p.,, and U_ are the undisturbed pressure, density, and velocity respectively, then
asymptotic expansions tor the velocity comnponents and the pressure are, for the case where

blowing is small enough that the blown layer flow is incompressiule,
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q.=0_6D" utx, y) +. (2.4a)
q,=T.. (51:)3/2 V(x, y) +... (2.4b)
- - - 2 e~ ~

P-P..=P.. 0. 8 p(x,y) +.. (2.4¢)

Here Gx and gy are the velocity components in the x and y directions respectively. If the blowing
velocity is large enough that the blown layer flow is compressible then,

_ RT 12 -
q, = (=2)  uxy) +. (2.5a)
mW
- RT 2, .
q, = (=) 8 v(x, y) +... (2.5b)
mw
B =p. UL(8)) p(x, ¥) +... (2.5¢)

where P << p and is neglecied, R is the universal gas constant and Tw and my are the gas
temperature at the wall and the molecular weight of the gas injected at the wall, respectively.

At hypersonic speeds the boundary layer along a solid surface can have a significant
displacement effect on the external inviscid flow, an effect which can be greatly increased by
surface blowing. Blowing at any flight speed can be strong enough that the boundary layer leaves
the surface and the thickness of the "blown layer” is large in companson with that of the separated
free shear lay-r. This "blowhard” preblem has been studied for several cases by Cole and Aroesty
[1], using a systeratic asymptotic approach. Their work has been chosen as the starting point for
the analytical part of the present study.

Cole and Aroesty consider thin shapes and chow that the pressure in the blown layer

depends, in a first approximation, only on the streamwise coordinate x. In most of their examples,




the results express the shape of the dividing streamline, which separates the blown gas from the air
which has passed through the shock wave from the leading edge, in terms of the blowing velocity
and the pressure distribution.

To obtain a general idea of the imagnitudes of the aerodynamic forces available through
blowing, the first rather simple calculation concerned hypersonic flow past a wedge, with a thin
ogival shape chosen for the dividing streamline; i.¢. for this calculation, s(x) was chosen, and the
required vyw(x) and the resulting p(x) were calculated.. For a blown-layer thickness small in
comparison with the wedge thickness, the small pressure perturbation is linear in the slope of the
dividing streamline, and for constant surface temperature the density is nearly constant in the
blown layer. The streamwise velocity component in the blown layer is then found in terms of the
pressure from the incompressible form of the Bermoulli equation. Integration of the definition of
the stream function leads to an expression for the scaled dividing-streamline shape s(x) in terms of
the surface blowing velocity vw(x) and the pressure p(x):

X

P, 12 v, (§)d§
S(X)=('—:—) J (2.6)

2., {3 - By

Inversion of the integral equation and substitution of the lineanzed pressure formula for supersonic

flow provides an explicit expression for vy, in terms of p.

For an ogival s(x) it is easy to evaluate the resulting integral analytically. The results can
then be converted to a plot of mass flow against force, as shown in Figure 2.4 for partucular vaiues
of the parameters. If there were no blowing, the pressure force on the wedge surface (normalized
in the same way as in the figure) would be, in the appropnate limiting case,
{(y+ 1)62/2} x 103 =23, The values shown in the figure are as large as one-half this value.

If the blowing velocity is somewhat larger, the blown-layer thickness is no longer small in
comparison with the wedge thickness. The relative pressure change caused by the blowing also 1s
ne longer small, and density changes in the blown layer can not be neglected, so that the

commpressible Bernoullt equation 1s required. The scaled dividing-streamline shape is now
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where Hg = total enthalpy. A curve similar to that in Figure 2.4 is obtained by numerical

(2.7)

integration, and shows (Figure 2.4) the increased force available with these larger mass-flow rates.

Addidonal curves for th. latter case of a compressible blown layer are shown in Figure 2.5
for a dividing streamline s(x) = (const.) {1 - (1 -x)3},0<x < 1,and s'(x) =0, x > 1. That is, the
dividing streamline becomes parallel to the wedge surface at x = 1, with continuous curvature. Itis
tound that the blowing velocity then approaches zero at x = 1, as seen in the figure. If instead, as
in Figure 2.6, s(x) = (const.) {1 - (1-x)2},0<x <1, and s'(x) = 0, x > 1, the blowing velocity
drops to zero discontinuously. These results are consistent with series expansions of the integral
equation about x = 1 which have been carried out for the two cases. These cases are helpful not
only in illustrating levels of available forces, but also in indicating the constraints on vy when
blowing is stopped at some point, as in strip blowing.

By contrast, the pressure forces for very weak blowing may be too small to be useful. For
a laminar boundary layer, the displacement thickness for high Mach number is
5* = 0.1 M_2 x/NRey, where Re, is the Reynolds number based on free-stream quantities and x,
and a linear viscosity-temperature law has been assumed for simplicity. Without blowing, the
resulting pressure perturbation is linear in the slope of the equivalent displacement surface, giving a
pressure force (again normalized as in Figure 2.4) of about 0.3 for Rex = 105 and for the wedge
angle and Mach number of Figure 2.4. With blowing this would be multiplied by a numerical
factor, say 2 or 3, and clearly is still far smaller than typical values in Figure 2.4.

As mentioned above, some effort has been spent on ascertaining the various sets of
conditions which can or must exist as vy (x) — 0 ata given point on the wedge surface. Such
analysis 1s necessary in order to handle properly the solutions for strip blowing and indeed
blowing with multiple strips. It is evident from physical considerauons and illustrated in Figures
2.5 and 2.6 that over the length of the wedge the wall pressure must decrease if the gas in the
blown layer is to go downstream. That is, the pressure gradient in the y direction is negligible and
50 the pressure disuibution at the wall is that which holds throughout the blown layer; if the
pressure rose, the fluid would be accelerated upstream. However, it may be desiratle to obtain
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pressure distributions quite different from those shown in Figures 2.5 and 2.6, so various
distributions of vy (x) Twst be considered. Strip blowing is a variation with promise because it
appears to allow for local increases in pressure. That is, from Figure 2.1b, with supersonic fiow
over s(x), it is seen that at each discontinuity in s(x) the pressure would rise in a short distance,
then decrease again as x increases. The result appears to be several local increases in p(x) each
followed by a decrease; with the average pressure decreasing as one goes from the vertex of the
wedge to some downstream point. This will allow for a quite different p distribution from those
found from the s(x) and vy (x) distributions given in Figures 2.5 and 2.6.

At the end of a strip, the manner in which vy (x) — 0 affects the distribution of s(x) and
thus of f)’(x). [t can be shown that s'(x) = O there if there are no other mechanisms te change the
pressure. From Equation 2.7, then, this can be shown to require that vy (x) — 0 continuously
rather than discontinuously. The manner in which v—» O for a given flow field, i.e. the functional
form needed to assure that s'(x) — 0 continuously is found using the derivative of Equation 2.7,
which relates s'(x) to vy (x) and p(x), and another equation relating two of the three unknowns.
For first calculations, the tangent wedge approximation is being used. ‘The resuiting equation for
P(x) and the equation showing the proper order of 0, are:

p(x) = (—Y—;—l-) (s'(x) + Ow )? (2.8a)
8, =(5) 8, (2.8b)

The f{inal relation with which one works is an integro-differential equation, of compiex form. The
analysis leading to the functional form for vy (x), and thus for s(x) and ﬁ(x), which is physicaily
correct and gives non-singular behavior at the edge of the strip, as well as the form of the solution
at the beginning of the next strip, is presently being carried cut.

The flows considered so far are for A << 1; 1.e. the flow pictures resemble that in sketch

(c) in Figure 2.3. As XL increases, the shear layer is no longer of negligible thickness, but of the

order of the blown iayer and shock layer thick:zsses; i.e., all are the same order and a strong
interaction takes place. Then the flow appears as shown in sketch (d) of Figure 2.3 and in more
detail at the top of Figure 2.7. This case aiso occurs for the flow shown in sketch (c) of Figure 2.3
as the vertex or leading edge of the wedge is approached,; i.c. the flow first follows sketch (d) for
x << 1, »nd then follows sketch (c) for x = 0(1). (n the following, the casc where the shear layer
thickness is no louger of negligible thickness compared to the oth=r layers is considered for
hypersonic flow over 2 flat plate, for simplicity.
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For a flat plate, then, again using a linear viscosity-temperature law, the boundary-iayer
thickness O0(M__2/YRey) is small in comparison with the shock-layer thickness 0(1/M,,) when

x >> M8V /0o, where V. /U,, is a viscous iength based on free-siream quantities; v, is the

kinematic viscosity in the undisturbed flow. In this range the interaction of the boundary-!ayer
with the external flow is a "weak" interaction, since the boundary-layer flow can be calculated first
and the correction to the external flow determined later. For x = 0(M_.%V./U_.) the boundary
layer and external flow must be calculated simultaneously, because the boundary-layar and shock-
layer thickness are of the same order of magnitude in M, and Rex. In the range
M2V SO, <<x << M6 \_/w/l._l,,o the interaction is called a "strong" interaction, and coupled

self-similar solutions are available for the boundary layer and shock layer. When
X = O(M“,2 Voo/U..) ("merged-layer regime"), length scales in both directions are of the same

order, and the different flow regions are nc longer distinct.

As indicated above, for strong blowing it is anticipated that there may be a significant flow
region where the shear-layer thickness can not be neglected. Tc gain some understanding of the
accompanying force changes, and for later comparison with numerical calculations, the case of
strong interaction with strong blowing is being studied. The tlown layer, shear layer, and shock
layer are distinct, with sel{-similar solutions available in each region. These can be obtained
separately, with a coupling arising primarily because the location of one layer depends on the
displacement thickness of the layer(s) below it.

To illusuate the nature of the solution, the form of the transverse velocity component Vv in
each of the three regions is as shown below, in terms of the appropriate similarity vartables. The
stream function V is defined in the usual way by 0\{/dy = P dx; the coordinate X is defined by
X = (U, XA )M, so that the strong-interaction range is M., 4 << X << 1.

UOx 2. . . _ U x .12
blovn laycr:v:(_ “x) vi€), E=M (—L )/( mx) (2.9a,b)

v.M Y Y
U X_-ya_ - - - U x._1/4

shear layer: v == ( = ) vi(€), &= Mi( W - )/( hos ’:) (2.9¢.d:
vM_ p.V.M_ v_M_

X _-l/4 X

U x /
shock layer: v = (—= - ) 0, &= (N _‘_u )/( - )1 : 2
7 M puM M |
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The solution for the blown layer is found from the results of Cole and Aroesty {1]. In
particular, the surface blowing velocity vy = (const.) Uw/‘/x is found to give surface pressures

p = (const.) .U, 2/Nx, consistent with the conventional strong-interaction theory but with a

larger constant factor, which is to be determined. The solution for the shear layer is found by
numerical integration of the compressible boundary-layer equations in self-similar form; velocity
and total-enthalpy profiles are shown in Figure 2.7. The solution for the inviscid shock layer
requires numerical integration of the self-similar hypersonic small-disturbance equations, which is

currently being carried out.
2.2 Numerical Approach

The computation of hypersonic flows, in the Mach-number range 8-30, puts before the
cornputational fluid dynamicist a number of problems not encountered in the lower Mach-number
range. One problem is the loss of accuracy of conventional finite-volume methods when
"capturing” strongly obligqne discoutinuities; more problems are encountered in marching to a
steady state, where loss of positivity of certain state quantities, non-uniqueness of discrete
solutions (recently found at NASA Langley Research Center) and general inefficiency of classical
relaxation methods or vector computers all contribuie tc slowing down or even nalting the
convergence process. Many of these problems have to be addressed when computing the two-
dimensional hypersonic flow over a wedge with surface blowing, which is the theme of the present

work.

In the period covered by this report, emphasis was put on the question of accuracy,
although matters of computational cconomy are not ignored, as will become ~vident below.

The representation of discontinuities oblique to the computational grid with high resolution
is a fundamental problem which at present is being considered only by a handful of researchers. It
would be easier to ignore it and simply rely on the capacities of today's supercomputers, namely,
by using greatly refined grids. Such a swrategy has often foresialled advances in computational
algorithms, especially in research environments equipped with the latest, top-of-the-line
computers, and eventually backfires. In the present situation it is the pursuit of three-dimensional
flow simulations that necessitates the developnient of high-resolution algorithms, since the number
of nodal points per dimension drops significantly.




There are two ways to improve the resolution of a flow computation without unduly taxing
the CPU budget; local grid refinement, and local reconstruction of discontinuities. These are
independent techniques that may complement each other in practice, and both are equally worthy of
research effort and support. Here, it has been decided to develop the latter technique, although
funding has been requested from other sources for developing grid-adaptation techniques, in
parallel to this work.

A study of the literature on the subject of "jump recovery"” at the start of the period, and
discussions of the subject with a few active in the field (S. F. Davis, NSWC, P. L. Roe,
Cranfield, and C. Hirsch, Brusse!s) during the summer have led to the following insights:

(a) there are several models of local flow that can provide information about strong
waves present in a discrete (finite-volume) solution;

(b} no one knows exactly how to include this information in a computational flow
algorithra that is stable and yields the desired accuracy.

While appaiently the greatest challenge is in (b), there is still ample room for ideas regarding the
modelling of local flow based on limited discrete data.

Following an approach: previousiy indicated in Reference [2], the initial work was begun
with a least-squares analysis of the local flow field based on only two sets of flow quantities,
describing the averaged states in two adjacent cells of fluid. If these states can be connected by a
single oblique disconiinuity, they should satisfy the jump equations

V(Q] =[f] cosa + [g] sin a, 2.10)

where Q is the state vector (components: mass, momentum and energy density), f and g are the
flux vectors in a cartesian framwe, a 1s the direct angle of the normal to the wave front, v is the wave

velocity, and [..] denotes a jump (see¢ Figure 2.8). In computational practice, exact satisfaction of
th2se equations never happens, but a sct of values (@, V) may be sought that minimizes the length

of the residual vector -

r=-V[Q] +[f]cos o+ [g]sina (3.1
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If the notation (.,.) is used for an inner product, then

(r,r) = V2([Q], [Q}) -2V([Q], [f] cos & + [g] sin &)

+ ([f] cos & + [g] sin @, [f] cos a + [g] sin o)

which, for fixed o, reaches a minimum for

V = {([Q], [f}) cos o + ([QI, [g]) sin &} /([Q],[Q])

With this choice of V,
e QL IR) (1Ql. Igh
= (1]~ o (Q1) €08 ¢+ (18] - o1y —<80 1)} sina

=acosa+bsina

Therefore

min (r,r) = (a,a) cos2 o + 2(a,b) sin & cos a + (b,b) sinZa
\'

- % ((a.a) - (b,b)} cos 20t + (a,b) sin 20 + %— (@.a) + (b,b))
Now v is defined such that
tan 2y = 2(a,b)/{(a,a) - (b,b}}

More specifically,

sin 2y = -2(a,b)/h,

cos 2y = -{(a,a) - (b,b)}/h,

h=v{(a,a) - (b,b)})2 + 4(a,b)?

Then
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)




min (rr) = - Jcos 2(a- ) + 5 () + (b.b)) (2.20)
v

which reaches its minimum value for

A=y + KR 2.21)

It is convenient to adopt
a= \Ij (2.22)

as the essential solution; with a0 = y + = there is only a change of sign in V. To find V, (2.22) is
inserted into (2.13).

There is one degenerate case, namely

(Q1//1£1/ (g} (2.23)

leading to a = b = 0. This occurs for the inviscid flcw equations when the wave shows up only as
a density (or entropy) fluctuation. Such a wave is linear, implying that the wave's velocity vector
is independent of the fluctuations it causes. I[n this case the normal to the wave front is not
meaningful; the flow angle remains the only useful direcdon. The formula for a is therefore
modified such as to yield the flow angle in the degenerate case (Eq. 2.23). Inserting this value into
Eq. (2.13) returns the flow speed.

Since entropy waves do not contribute to the detection of a wave direction from two
neighboring states, one might as well remove these from the analysis. Eliminating entropy
variations not accompanied by pressure variations leads to a very simple formula for a:

tan (2a) = 2[u] [v] /( [u]* - [V]?) (2.24)
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This equation has two solutions:
tan g = [v]/[u] , tan &z = -[u] / [V] (2.25a,b)

Here u and v are the x- and y-components of the flow velocity. The first angle o indicates the
direction norninal to a shock wave, the second angle 03 the normal to a shear wave. By removing
the entropy variations——which were irrelevant— bifurcation has been introduced: it is not clear
how to switch smoothly from one case to the other for general data. In this respect the analysis is

still incomplete.

Knowledge of o enables a solution to be found of the problem of the interaction between
the two states, called QL and Qg, in the proper frame of reference, in particular, using the proper
projected velocities. The generic formula to compute the flux of the interface between two fluid
cells follows from the solution of the Riemann problem Jefined by the different states. Solving the
Riemann problem, however, requires an iterative procedure, even when the ideal-gas law is
assumed, which explains the emergence of several highly useful "approximate Riemann solvers",
reviewed in [3] and [4]. Knowledge of V suggests a new approximate Riemann solver, with the
algebra brought down to the absolute minimum:

fQu Qr = 5w + fiop) - VI (@ - QU (2.26)

The sign A indicates that the fluxes are measured in the direction of the wave vector. If the states
QL and Qg can be connected by a single discontinuity, this formula recovers the flux that follows

from the exact Riemann solution.

Less clear is how to compute a flux in the direction a + /2, i.e. normal to the wave vector.
This flux, indicated by g, is needed for compounding the fluxes in an arbitrary direction, in
particular, in the direction normal to the interface separating cells L and R (see Figure 2.9). The

simplest formula is
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8QL, QR =5 {8QU) + §QR)) 2.27)

but this leads to central-differencing of the g-fluxes in the final updating scheme and could be
unstable. Numerical tests confirm this as will be seen. Davis [5] avoided this type of instability by
averaging g over 3 cells rather than 2, as in Eq. (2.27), according to an algorithm distinguishing 8
cases. Present experimentation is aimed at finding a simpler, yet robust algorithm using a minimal
number of data.

The above analysis is not restricted to updating schemes of a particular order of accuracy. .
In fact, tests of the numerical resolution of discontinuities are best carried out on the basis of a
first-order upwind-differencing scheme, since the penalty on ignoring the direction of a
discontinuity is greatest. Results for an eblique shock show the excessive smearing typical for a
standard upwind scheme. In contrast, a shock aligned with the grid has only 1 to 2 cells across.

For the actual computations a scheme with second-order accuracy is needed (one of the so-
called x-schemes tested in [6]); this is presently being tested. The time-marching experimentation
will be carried out with new explicit methods developed in parallel by some other doctoral students
in the department. These combine a local but matrix-valued preconditioner with a Runge-Kutia-
type updating scheme that hides a low-pass filter. Such a marching algorithm is needed for a
successful multigrid scrategy, to be added later. Both the preconditioner and the Runge-Kutta
scheme depend crucially on the availability of directional information such as the angle o derived
above. The choice of the marching scheme, viz. explicit rather than implicit, 1s motivated by the
availability of vector computers, for which such schemes are pre-eminently suited.
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2.3 Numerical Results

The numerical work was started by developing a set of grids on which to carry out the
numerical computations. The logical first choice was a cartesian grid positioned along the wedge
face extending from the nose back (Figure 2.10). However, once blowing is applied at the nose it
ic anticipated that the eifective body shape will become more blunt and the shock may stand out off
from the body and thus fall off this grid. Moreover, since the nose area is anticipated to be a
critical area, a local concentration of points may prove worth while. With this in mind a standard
polar grid and a C-tvpe grid were developed (Figs. 2.11 and 2.12). The C-type grid in this case is
the result of taking a regular C grid and letting the radius of curvature go to zero at the nose. This
creates a set of triangles at the nose which should not be a problem with a Godonov-type finite-
volume scheme. The C-type grid (as is the cartesian grid) is created by laying out points along the
body and then constructing, row by row, nearly orthogonal cells with specified wall heignts. By
controlling these wall heights, one can expand or contract parts of the grid at will (i.e. concentrate
points in a specific area).

In order to study various numerical effects, a series of test protlems are derived from the
full problemn. The test problem considered first is the resolution of a shock aue 0 4 wedge with a
109 half angle in Mach 5 flow. The numerical calculations are carried out on a cartesian grid
positioned along the wedge face. This results in a shock at an angle of about 9.59 relative to the
lateral lines of the grid (exact solution). Initally, a first-order upwind scheme was tested using a
Harten-Lax-Roe approximate Riemann solver for each dimension separately.

FQL. QR) = 3 ([fQL) + HQRHV(Qk-QL)] (2.282)
2(QT. QB) = 3 ([8(Q1) + 5QBIV,(Q1-Qp)) (2.28b)

where Vy and Vy are based on one-dimensional information:

V= ({QJ, [fDALQL, 1QD, (2.29a)
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Vy = ([Ql, [gh/((QI, [QD). (2.29b)

This appucation of an essentially "one dimensional” scheme to two dimensions results in excessive
smearing of the shock, as seen in Figs 2.13 and 2.14. Figure 2.13 is a contour plot of the density;
the x-axis lies along the face of the wedge, the y-axis normal to it. The nose cf the wedge is at the
origin. Figure 2.14 is a 3-D plot of the density jurap. Again the nose of the wedge is at the origin,
but now the y-axis lies along the face of the wedge, the x-axis normal to it. The x-y plane is the
computational grid and the magnitude of the density is plotted normal to it along the z axis.

Next the first-order code was extended to calculate the cell interface fluxes based on fluxes
measured normal to and parallel to the wave. The flux normal to the wave is described by the

formula

fiQr. QU = 3 ((fQR) + FQIVIQR-QU) (2.30)

With V obtained from Egs. (2.13 - 2.22), the flux tangent to the wave is found by the simple
averaging procedure, Eq. (2.27). This results in an unstable scheme. The calculation was started
with an initial-value distribution similar to that of the exact solution. Figure 2.15 shows the
distribution after 3 time steps. Figure 2.16 shows the distribution after 233 time steps when one
cell pressure has become negative.

By adding dissipation along the wave, i.e. using

2(Qr. QU = 7 (BQR* EQUIMVIQr-QL)) 231)

the scheme becomes stable but the lower quality of the non-rotated algorithm is recovered, as

shown by the smeared shock in Fig. 2.17.

With this matter still unresolved a second-order upwind scheme was implemented. This
produces sharper shocks to begin with, since it is assumed that the distribution of state quantities in
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each cell is linear rather than uniform, as for the first-order scheme. The gradient of this
distribution in each cell is obtained by central differencing, e.g.

(Qg o A 1n® B8
ox 24x

(2.32)

but this value is "limited" in order to prevent numerical oscillations. It turns out that small
oscillations nevertheless remain present; these are sensitive to the strength of the limiter as well as
to the obliqueness of the shock with respect to the grid.

The limiter used for the results of Fig. 2.18 is the weakest possible one, due to Van Leer

[71:
A. u+A, 1
1 minmod QA u, M2 M2 oA )y
p Ax 12 2 i+1/2
u M 'Y —
{('é';‘)j}limitcd = if sgu (Aj._”2 u) = sgn (Ahm u)
0 otherwise (2.33)

For Fig. 2.19 the strongest possible limiter was used:

1 .
—A—x minmod (Aj_mu, Aj+1/2u)

{(-gil-)l } limited = if sgn (Aj_wu) = sgn (Aj+1/2u)

0 otherwise (2.34)
still leaving some oscillations. Adjusting the mesh ratio Ay/Ax such that the shock runs diagonally
across the gnd (see Fig. 2.20) removes almost all oscillations when the limiter in Eq. (2.34) is
used. Further experimentation is needed to ensure that the combination of flux formulas and

gradient limiter gives a monotone shock profile regardless of the mesh ratio.
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FIG 2.8 Definition of a and v
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FIG 2.9 Sketch of adjoining cells; both f and g are
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Fig. 2.17 Plot of the density for the case where n
dissipation has been added both normal tn and along the wave,
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Fig 2.9
Piot zhowing the magnitude of the density as found by the second order scheme
using the filux limiter as in Eq. 2.34.
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